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ABSTRACT

The structural and thermodynamic properties of minerals are strongly affected by cation site-ordering
processes. We describe methods to determine the main interatomic interactions that drive the ordering
process, which are based on parameterizing model Hamiltonians using empirical interatomic potentials
and/or ab initio quantum mechanics methods. The methods are illustrated by a number of case study
examples, including Al/Si ordering in aluminosilicates, Mg/Ca ordering in garnets, simultaneous Al/Si
and Mg/Al ordering in pyroxenes, micas and amphiboles, and Mg/Al non-convergent ordering in spinel
using only quantum mechanical methods.

KEY WORDS: Monte Carlo simulation, cation ordering, interatomic potentials, phase transitions, alumino-
silicates.

Introduction

THIS paper gives a review of computational
methods that can be used to calculate the energies
associated with the site ordering of cations in
minerals. The discussion encompasses a wide
range of phenomena, including cation-ordering
phase transitions (such as Al/Si ordering on
tetrahedral sites in aluminosilicates) and solid
solutions in which there are no phase transitions
(Putnis, 1992). The central point is that both
short-range and long-range structural ordering are
driven by short-range energies. In the simplest
cases these can be represented by simple bond
energies, but this is not a necessary limitation.

The approach we discuss here is based on
models for calculating the energies of different
atomic con� gurations of a given material. Often
these energies are represented by simple empirical
functions with parameters that are tuned against
experimental data. But empirical models have
their limitations, so we need also to consider the
possible use of quantum mechanics methods.

In this paper we will review the basic approach
that has been developed in Cambridge for the
determination of energies of ordering of cations in
minerals (e.g. Thayaparam et al., 1994, 1996;
Bosenick et al., 2000; Dove et al., 2000). We � rst
describe the models that are used to describe the
interactions between atoms, based either on
empirical functions or quantum mechanics
methods. Secondly, we outline how the ordering
energies can be described in terms of individual
bond energies, thus allowing the total bond energy
of a system to be reduced to a small number of
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parameters. We explain how, in principle, these
parameters can be obtained from appropriate
calculations. Thirdly we describe the practical
approach to determining these problems based on
the use of spreadsheet calculations. Finally, we
present a number of examples that illustrate various
aspects of the calculations outlined in this paper.

The motivation for this work is the need to
determine a set of interaction parameters for
statistical mechanics applications. Our own
objective is to use these interactions in Monte
Carlo simulations of ordering processes (e.g.
Thayaparam et al., 1994, 1996; Myers et al.,
1998; Dove, 1999; Dove et al. , 2000), as
described in the following paper (Warren et al.,
2001). However, the interactions can also be used
in other statistical mechanics tools such as the
Cluster Variation Method, as recently applied to
studies of Al/Si ordering in aluminosilicates
(Vinograd and Putnis, 1999, Vinograd et al.,
2001) and to Zn-Fe mixing in sulphides (Balabin
and Sack, 2000). Moreover, taken by themselves,
the relative sizes of exchange interactions may
provide fairly immediate insights into the driving
mechanisms of ordering processes (examples are
given below). Our approach is dominated by the
application to cation ordering in mineral systems,
such as (but not exclusively) Al/Si ordering on
tetrahedral sites and Mg/Al ordering in octahedral
sites in aluminosilicates. We have found that the
approach described here works well for such
examples, probably because the ordering energies
are primarily associated with localized structure
relaxations associated with strain interactions of
‘reasonable’ size. We have tried adapting these
methods to the study of oxygen-vacancy ordering
in perovskites, but were unsuccessful. This
possibly represents the hardest case one might
wish to study, because the formation of a vacancy
is always associated with a signi� cant displace-
ment of the cation in the polyhedron from which
the oxygen atom is removed. However, it does
alert us to the fact that there is a limit to the range
of situations to which our methods can be applied,
although we note that oxygen vacancy ordering in
alumina has been studied using a similar approach
(Lee et al., 1997).

Models for the interatomic interactions

Models based on parameterized empirical functions
The essential component of the approach is a
method to calculate the energies between atoms.
In the formalism we will present later, we will

represent the energy associated with the ordering
of atoms in terms of the energies of individual
bonds (pair interactions), but this does not require
us to use only pair potentials in the initial
calculations. For silicates we use empirical
models based on the shell model devised for
silica by Sanders et al. (1984). Short-range
interactions are modelled using Buckingham
potentials:

j(r) = Bexp( r/r) Cr 6

The � rst term is the ‘repulsive interaction’,
which arises from overlap of electrons on
neighbouring atoms. Its functional form appears
to be a good representation of quantum mechanics
calculations (Post and Burnham, 1986). The
second term is the ‘dispersive interaction’,
which is due to correlated � uctuations in the
electron densities of pairs of atoms. It is most
appropriate for polarizable ions such as O2 , but
it is used in the model for the Si....O bond as a
means of providing additional parameterization.

Covalent effects are modelled by use of
harmonic potentials that depend on the O Si O
angle y:

j(y) = 1
2k(y y0)2

This potential acts to provide a force against
deformation of the SiO4 tetrahedra, a role that
would otherwise have to be played by the O...O
potentials. The potential is also used for the
O Al O bond angle in aluminosilicates.

Long-range Coulomb interactions are treated
using formal charges, because this makes
transferability rather easier to build into the
models. It appears that the use of formal charges
has no signi� cant effect when modelling the
structures and lattice dynamics of aluminosili-
cates (Winkler et al., 1991; Patel et al., 1991;
Sainz-Diaz et al., 2001). However, quantum
mechanics tests of Al/Si tetrahedral ordering
energies suggest that formal charges provide a
slight overestimation of the energy required to
replace two Al O Si linkages by the pair
Si O Si and Al O Al (McConnell et al.,
1997).

Electronic polarizability is treated by using a
shell model for the oxygen anion, in which there
is an harmonic energy associated with the
displacement, d, of the centre of the positively
charged core with respect to the centre of the
shell:

j(d) = 1
2Kd2
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Parameters for interactions involving silicon
and oxygen were � tted to experimental data for
quartz. Parameters for other cations are taken
from other empirical studies or from electron gas
quantum mechanics calculations (Post and
Burnham, 1986). The models have been tested
in some detail for a wide range of aluminosilicate
minerals (Winkler et al., 1991; Patel et al., 1991;
Sainz-Diaz et al., 2001), enabling them to be used
for a wide range of aluminosilicates with some
con� dence.

Calculations with empirical functions were
performed with the GULP lattice energy code
(Gale, 1997). This adjusts the atomic coordinates
and unit-cell parameters to minimize the lattice
energy. When the positions of two cations are
exchanged, there is necessarily some relaxation of
the atomic positions, because exchanging the
positions of two cations of different sizes leads to
changes in local forces. These forces will be
relieved by the energy-minimization process.

Empirical models are surprisingly good
(Winkler et al., 1991), particularly when it is
appreciated that in many cases the parameteriza-
tion has not taken account of energies. Instead, the
models are usually parameterized against crystal
structures and physical properties, which depend
on the derivatives of the interatomic potentials but
not on the actual values. Our experience is that for
many cases the empirical models give reasonable
values for the ordering energies, but there are
cases when empirical models would be inap-
propriate. These include cases when atoms jump
between sites of different coordination. An
example is the ordering of Mg and Al cations
between the tetrahedral and octahedral sites in
spinel (Warren et al., 2000a,b). In such cases
there is a change in energy associated with a
cation moving from one type of site to another,
and it is unlikely that this energy will be properly
represented by the empirical models. For these
applications, the only viable approach is the use
of quantum mechanics calculations.

Models based on quantum mechanics electronic structure
calculations

Our approach in using quantum mechanics
methods is to use the ‘Density Functional
Theory’ (DFT) implementation of many-electron
quantum mechanics (Payne et al., 1992). The
main approximation in this approach is in the way
the exchange and correlation energies are treated,
because there is no explicit formulation of these

energies. We use one of two standard methods,
the ‘local density approximation’ (LDA) and the
‘generalized gradient approximation’ (GGA).
Neither approach is perfect, and there are cases
when either may give better results than the other,
although it is hoped that any differences will not
be large. Electronic structure calculations are
made easier by using the pseudopotential method
to represent the inner electrons in atoms, which
means that we only need to explicitly consider the
wave functions of the outer electrons in each
atom.

We initially used the most common implemen-
tation of DFT for the study of solids, which is
based on the use of the superposition of plane
waves to represent the electronic wave functions.
A number of codes are available, many of which
have been developed for parallel computers; we
used the CASTEP/CETEP programs (CASTEP
4.2 Academic version, licensed under the UKCP-
MSI1 Agreement, 1999; Payne et al., 1992;
Clarke et al., 1992). The amplitudes of the plane
waves are varied to lower the total energy in line
with the variational principle. Plane waves are
particularly appropriate when there is an inherent
periodicity in the system being studied. One of the
advantages of the plane-wave approach is that
there are no restrictions on the form of the
electron distribution, and any de� ciencies in the
calculations will arise from the use of the LDA or
GGA approximations or the use of the pseudopo-
tential method. The main disadvantage of the
plane-wave approach is that the size of the
calculation scales as the size of the system, N,
with a power-law dependence of between N2 and
N3. As a result, the study of large systems is
problematic, and the potential contribution of the
quantum mechanics methods is limited as a result.

Methods for which the size of the calculation is
able to scale more-or-less linearly with system
size, known as ‘Order-N’ or ‘O(N)’ methods, are
based on a real-space description of the electron
density. We have been using the SIESTA code
(Ordejón et al., 1996; Artacho et al., 1999), which
uses atom-centred electron orbitals, similar to
those familiar in quantum chemistry, to represent
the electron density within the formalism of DFT
(with either the LDA or GGA implementations of
the exchange and correlation energies). SIESTA
also uses the pseudopotential method. We have
shown that the use of SIESTA can give reason-
able results for a wide range of aluminosilicate
minerals (Craig et al., 2001), although for
calculations of ordering energies we have found
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that SIESTA does not give as high an accuracy as
the plane-wave methods because it is harder to
form a near-complete basis set for an atom-
centred basis than with plane waves. However,
because it is possible to perform more calcula-
tions on complex systems, SIESTA is able to play
an important role when quantum mechanics
methods are needed to overcome some de� cien-
cies of empirical methods. Moreover, it is likely
that new developments in the use of atomic
orbitals will allow this approach to become more
accurate. At the present time, our experience is
that for highly accurate calculations, so many
orbitals may be needed that some of the
advantages over plane wave methods are
lessened.

We should remark that in some cases the issue
is not of whether to choose between empirical
models or quantum mechanics, but instead a
combination can be used. Quantum mechanics
methods can be used to tune empirical models or
to � ll in for some de� ciencies of the empirical
models. As we have noted above, quantum
mechanics methods are essential when calcu-
lating the energy associated with a cation
moving between different types of sites (what
we will call the ‘chemical potential’ below). We
have found, however, that empirical models are
able to give reasonable results for the changes in
bond energies associated with cations exchan-
ging positions between similar types of sites
(what we will call the ‘exchange interaction’
below). The methods used to compute these
energies involve a large number of calculations
of the energies of different atomic con� gura-
tions, as will be described below. The number of
con� gurations is usually too large for quantum
mechanics methods to be practical. But it is
possible to perform these calculations with
empirical methods, and to check some speci� c
con� gurations with quantum mechanics methods
in order to tune the empirical energies. This was
an approach used to test the energies associated
with Al/Si ordering in tetrahedral sites in
aluminosilicates (McConnell et al., 1997) as
mentioned above. Another approach is to use the
bond energies obtained by empirical models, and
to use the quantum mechanics calculations to
obtain the energies associated with atoms
moving between different types of sites. The
proviso on this is that there should not be a
strong correlation between the � tted values of
this energy and the exchange energies, as
discussed below.

Basic theory

The initial approach is to represent the energy of a
system in terms of individual bonds (Putnis, 1992;
Dove, 1999; Dove et al., 2000). For example, if
we have a simple network containing atoms of
type A and B, for a given bond type we assume
that the energy can be expressed in terms of the
separate A A, A B and B B bond energies:

E = NAAEAA + NBBEBB + NABEAB

where NAA etc. are the numbers of each type of
bond, and EAA etc. are the energies of each type
of bond. Clearly the sum of the different types of
bonds must be equal to the total number of bonds,
which implies that there must be some inter-
dependence between the numbers of different
bond types (e.g. both NAB and NBB are determined
by NAA, as demonstrated below). In fact, for many
cases the numbers of each type of bond depend on
the number of only one type. In what follows we
show for a few special cases how the number of
independent variables can be reduced in this way.
We chose our examples to show how to make this
reduction, but we also present a small number of
counter examples to show that one has to be
careful about over-generalizing. Our set of
examples is not exhaustive of all the types of
cases one might encounter, but it should be
possible to adapt the principles to any new case.

Although most of our analysis is in terms of the
pair energies de� ned above, it is possible that
there will be energy terms that depend on the
distribution of larger groups of atoms. In our work
on mineral systems we have generally found that
the use of such terms does not signi� cantly
improve the quality of the model representation of
the ordering energy, since the effects can usually
be taken into account by the use of a larger set of
pair interactions. For the case of spinel (discussed
later), a multi-site energy term was included in
order to reduce the number of independent pair
energy terms, but in other cases the use of a
consistent set of multi-site terms is likely to
increase the number of energy terms.

We note at the outset that for simulations of
solid solutions we do not assume that the energies
EAA etc. are independent of the chemical
composition. However, we have found for
several example systems that the ordering
energies are more-or-less independent of the
chemical composition provided that it is only
the compositions of the ordering cations that
change. For the case where there are two ordering
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cations, this insensitivity to composition has the
effect that the formalism is symmetric in
composition about 50:50 mixtures.

Case 1: A network of sites with fixed numbers of A and B
cations

We � rst consider the simplest case of a single
network of N symmetrically equivalent sites, as
illustrated in Fig. 1. This case has a fraction x of
A atoms and fraction (1 x) of B atoms. Each
site has z neighbours. We take the number of
A A bonds, which we label NAA, as the
fundamental variable. For each A atom, the
probability that a given neighbour is also an A
atom is written as PAA. The number of A A
bonds follows from the product of the number of
A atoms and the probability of each of these
having an A atom as a neighbour in each bond:

NAA = 1
2 zNxPAA

The factor of Ý is included to avoid counting
each bond twice. The number of A B bonds is
simply given by product of the number of A
atoms and the probability that each bond has a B
neighbour:

NAB = zxN(1 PAA) = zxN 2NAA

Finally, the number of B B bonds is equal to
the total number of bonds minus the number of
A A and A B bonds:

NBB = 1
2 zN NAA NAB

= 1
2 zN(1 2x) + NAA

We recall from above that if the energy to form
an A A bond can be written as EAA, and likewise

for EAB and EBB, the total energy can be written
as:

E = NAAEAA + NBBEBB + NABEAB

= NAAEAA + 1
2 zN 1 2x NAA EBB +

(zxN 2NAA)EAB

= NAA(EAA + EBB 2EAB) +
1
2 zN(2xEAB + (1 2x)EBB)

= NAAJ + E0

E0 is the constant term that does not depend on
the number of bonds of any speci� c type, and J is
the energy associated with atoms exchanging
positions so as to replace two A B bonds with an
A A and a B B bond. J is called the ‘exchange
interaction’, and is of central importance in the
process of modelling cation ordering. A positive
value of J implies that it is energetically
preferable for the two sites to contain different
cations, whereas a negative value implies that it is
energetically preferable for the two sites to
contain the same cations. The example we have
worked through shows that the total energy can be
written in terms of the number of A A bonds
only, the point being that the numbers of A B
and B B bonds are completely determined by the
number of A A bonds. The formation of an A A
bond implies the formation also of a B B bond
and the loss of two A B bonds. This is a common
feature, and is exploited in the methods developed
to determine values of the exchange interaction J.
Incidentally, one could therefore argue that
Löwenstein’s rule of Al Al avoidance in frame-
work aluminosilicates is also a rule of Si Si
avoidance.

We note for future reference that it follows from
this analysis that we cannot determine the values of
EAA, EBB or EAB separately. Because of the
constraints on the numbers of atom pairs, which
we exploited to reduce the number of interactions
to just J and E0, we do not have independent
equations to allow the separate bond energies to be
extracted from a system with a � xed composition.
In principle, it might be thought that these could be
extracted if simulations can be run at several
different compositions through the dependence of
E0 on the composition, assuming that there is not a
dependence of J on composition through a non-
analytical process (indeed, we often � nd that J is
independent of composition). However, there will
be an intrinsic dependence of E0 on composition,
which arises from the normal chemical potential
not considered in this analysis.FIG. 1. Representation of a network.
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The picture given here also applies in the case
where there the network is not fully linked, as
illustrated in Fig. 2. In these examples, we have
chains of sites, or pairs of sites. When the
equations are written for this case, the same
result is obtained as for the fully linked network,
even when allowing the composition of each set
of linked sites to vary.

Case 2: A network of sites withvariable numbers of A and
B cations

The case where the numbers of A and B cations
are variable represents the case where there are
several different types of sites. An example might
be two networks between which cations can be
exchanged, for which we need to de� ne the
interactions between the atoms of a single
network (Fig. 3). In this case we cannot simply
reduce everything to just the count of one type of
bond. Instead, we write the number of A B bonds
in terms of the number of A A and B B bonds:

NAB = 1
2 zN NAA NBB

Thus the total bond energy can be written as

E = NAAEAA +

NBBEBB + 1
2 zN NAA NBB EAB

= NAA(EAA EAB) + NBB(EBB EAB) + 1
2 zNEAB

In this formulation, the energy is now a
function of both NAA and NBB. Alternatively,
noting from above that if a particular con� gura-
tion of the network contains a fraction x of A
atoms,

NBB = 1
2 zN(1 2x) + NAA

we can rewrite the energy as

E = NAA(EAA EAB) +
1
2 zN 1 2x NAA (EBB EAB) + 1

2 zNEAB

= NAA(EAA + EBB 2EAB)

zNx(EBB EAB) + 1
2 zNEBB

= NAAJ mNx + E0

This is identical to the equation in the � rst case
discussed, but now we explicitly take account of
the term that depends on x, which is to be treated
as a variable. This new term has the form of a
chemical potential, as represented by the
constant m:

m = z(EBB EAB)

It should be noted that the variation in
composition in one network will give rise to a
corresponding variation in composition on the
second (or other) network(s). The expression for
the bond energies on the other networks will give
rise to new chemical potential terms. However, it
is likely that the different networks correspond to
sites of different symmetry. It may even be the
case (as we will � nd in the example of spinel
later) that the different sites have different
coordination number. Therefore, it is likely that
there will also be an intrinsic energy of moving an
atom from one type of site to another,
independent of the changes in the bond energies
we have been discussing. These energies can also
be expressed as chemical potentials, and we can

FIG. 2. Examples of networks of sites that are not linked.
FIG. 3. Two networks between which cations can be

exchanged.
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subsume the bond contributions and the intrinsic
site energies into a single chemical potential.

It is important to realise that there are
constraints operating on the chemical potentials.
For example, we have shown that if, for one type
of site, there is a fraction x of one type of atom
and 1 x of the other type, the chemical potential
can be reduced to a single function of x. Now
suppose that we have n types of sites, and two
types of atoms, A and B. For each type of site,
which we label by i, we have a fraction xi of atom
type A, and a corresponding chemical potential mi.
We now have the constraint that

n

i 1

xi 1 xn 1
n 1

i 1

xi

The chemical potential energy can therefore be
written as

Em

n

i 1

mixi mn

n 1

i 1

mi mn xi E0

n 1

i 1

mxi

We conclude that for n sites, there will be n 1
independent chemical potential terms. Although
each term is a mixture of bond and site energies, it
will be suf� cient to treat all effects together in the
set of values of mi.

Case 3: Interactions between two distinct networks of
sites with A and B cations in one network and A and C
cations in the second network

The case with two distinct networks is illustrated
in Fig. 4. Here we are interested in the interactions
between networks, represented by the vertical
bonds. We consider the case where there are N
atoms in each network, with a mixture of xN A
and (1 x)N B cations on one network, and a mix
of yN A and (1 y)N C cations on the second
network. The number of A A bonds between the
networks is denoted as NAA. Thus the number of
A C bonds between the networks is

NAC = xN NAA

The number of B A bonds between the
networks is

NBA = yN NAA

Finally, the number of B C bonds between the
networks is

NBC = N NAA NAC NBA = (1 x y)N + NAA

Thus the bond energy is equal to

E = NAAEAA + EAC(xN NAA) +

EBA(yN NAA) + EBC((1 x y)N + NAA)

= NAA(EAA + EBC EAC EBA) +

N(xEAC + yEBA) + (1 x y)EBC)

= NAAJAA + E0

Again, this depends only on one number, which
we have chosen to be NAA. Note, however, that J,
which we have labelled JAA, is now de� ned in
terms of the bond energies in a way that is
different from the case where we had only two
types of ordering atom. It is because the de� nition
is not symmetric with respect to the atom types
that we label it JAA instead of just J as in the two-
atom case. Similar de� nitions will be found in the
general case (case 4 below) of a system with three
ordering atoms.

Case 4: A network of sites with fixed numbers of A, B and
C cations

The network we now describe is the same as in
Case 1, but now we have three ordering cations
instead of two. We consider the case of three
ordering atoms, A, B and C, with proportions x, y
and 1 x y respectively, and a lattice with one
type of site having z neighbours. We begin, as
before, by considering the A atoms. Each site
containing an A atom has the probability PAA that
a neighbouring site also contains an A atom.
Thus, if there are N sites in total, we can write the
number of A A linkages as

NAA = 1
2 zNxPAA

Hence it follows that the number of A B and
A C linkages is

NAB + NAC = zNx(1 PAA) = zNx 2NAA

Similar equations follow for other pairs of atom
types, and it is easiest to express all the equations
in matrix form:FIG. 4. Two distinct networks.
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0 1 1
1 0 1
1 1 0

NBC

NAC

NAB

zNx 2NAA

zNy 2NBB

zN 1 x y 2NCC

The solutions of this matrix equation are

NBC = zN(1 2x)/2 + (NAA NBB NCC)

NAC = zN(1 2y)/2 + (NBB NAA NCC)

NAB = zN(2x + 2y 1)/2 + (NCC NAA NBB)

The result is that the energy equations can be
expressed in terms of the three variables NAA,
NBB and NCC. The energy can therefore be written
as

E = (EAA + EBC EAB EAC)NAA +

(EBB + EAC EAB EBC)NBB +

(ECC + EAB EAC EBC)NCC +
zN
2 (EAB(2x + 2y 1) +

EAC(1 2y) + EBC(1 2x))

= JAANAA + JBBNBB + JCCNCC + E0

where the exchange constants and constant term
are now de� ned as

JAA = (EAA + EBC EAB EAC

JBB = (EBB + EAC EAB EBC)

JCC = (ECC + EAB EAC EBC)

E0 = zN
2 (EAB(2x + 2y 1) + EAC(1 2y) +

EBC(1 2x))

Note that the de� nition of the exchange
interactions has the same form as in case 3
above, where we also considered the presence of
three types of ordering atoms (albeit with a
particular separation across two networks).

The important difference between this result,
where we now have three exchange constants, and
that of the earlier results where there was only one
exchange constant, is due to the different balance
between the number of bond types and the
number of constraints in the equations. In the
case of the binary system, there were 3 variables,
NAA, NAB and NBB, and 2 independent constraints,
namely the total number of atoms of type A, and
the total number of bonds. The former ensured
that the value of NAB was linked to the value of
NAA, and the second ensured that the value of NBB

was then tied to both NAA and NAB. In the case of
having three ordering atoms, there are six
variables (NAA, NBB, NCC, NAB, NAC, NBC) and

three constraints, namely the number of A and B
atoms and the total number of bonds. The balance
means that there will be three variables whose
values are undetermined by the constraints, and in
these equations we have chosen these to be the
numbers of bonds between like atoms. Some
comments on the implementation of this case will
be discussed at the end of the next section.

This argument can be generalized to the case
where there are n types of ordering atom. Then
there will be n(n+1)/2 bond variables and n
constraints, and hence n(n 1)/2 independent
bond variables. Noting that with n types ordering
atoms there will be n types of neighbours of like
atoms and n(n 1)/2 types of neighbours with
unlike atoms, it will then be preferable to recast
the equations here to give the energies in terms of
the numbers of bonds with unlike atoms. This is
relatively straightforward following the discus-
sion here. If we have any number of ordering
atoms, each with proportion x1, x2, etc., subject to
the sum of proportions equal to 1, the number of
bonds involving the same atom (labelled i) is

Nii = zNxi
j

Nij

The set of Nii can be substituted into the general
energy equation

E = E0 +
ij

NijEij

where the angle brackets in the summation denote
the fact that no bond should be counted twice.
This substitution gives an energy expression that
only contains terms where i = j.

Effects of temperature

The procedure outlined above has not taken
account of temperature or pressure; it has been
tacitly assumed that neither of these have
signi� cant effects. We have performed some
tests with garnet to show that the ordering
energies are not affected by pressure in this
case, and our experience that constraining or
relaxing the volume has little effect on the
calculated ordering energies supports this speci� c
test. We do not anticipate that temperature will
have an effect, but this is much harder to evaluate
because it would mean going beyond the static
energy minimization method. We note that some
tests along these lines are being carried out on
simple systems by Allan and co-workers (Allan et
al., 2000).

200

A. BOSENICK ETAL.



Implementation

General principles

By expressing the energy in terms of the energies
of speci� c bond types, we have provided a
relatively simple representation of the energy.
There will usually be several different types of
bonds to consider, as represented by Fig. 5. In this
picture, there are two different types of sites, and
the sites are linked by interactions of different
types as represented by the different thicknesses
of the bonds. The energy of any con� guration can
be represented by the general expression

E
i j

N i j
AA Jij

j

mjx
j
A E0

The � rst term sums over all types of bond (the
angle brackets denote the sum is over pairs of
atoms, avoiding double counting of bonds), and
the second term sums over all types of sites. We
now allow the exchange interactions Jij to depend
on the type of bond formed by the pair of sites i
and j (e.g. nearest neighbour, second neighbour
etc.), and allow the chemical potential mj to
depend on the site if there is more than two types
of distinct sites. The task is to obtain the complete
set of exchange energies Jij and the chemical
potential energies mj.

Our approach is to produce a large number of
con� gurations with different arrangements of
atoms and to compute the energies of each
con� guration following the minimization of the
lattice energy. Each con� guration consists of a
large unit cell that is a supercell of the unit cell of

the system, and the periodic boundaries are
retained to avoid effects of surfaces and � nite
sizes. The different cations are distributed across
the cation sites at random. The lattice energy of
each con� guration is relaxed in order to relieve
stresses associated with the exchange of cations of
different sizes. After the energies of many
con� gurations have been obtained, the values of
the parameters J and m are � tted against the
database of energies (of course, the � tting
procedure will also include E0, but this quantity
is of no subsequent interest in the study of
ordering behaviour). We have found that between
50 100 con� gurations are useful for this
procedure.

As an aside at this point, we remark that it is
not clear whether, in principle, one should allow
the unit-cell parameters to relax in the mini-
mization of the energy of each con� guration.
One could argue that the relaxation of the unit
cell allows for complete relaxation of the stresses
and is therefore a good thing. On the other hand,
one could also argue that the use of periodic
boundary conditions simulates the embedding of
a small region of the crystal within a disordered
matrix, and that by allowing relaxation of the
unit cell parameters also changes the density of
the matrix. Fortunately, we have found that these
questions of principle do not need to be resolved,
because the energy changes associated with
relaxation of the lattice parameters are not
signi� cant if an appropriate set of initial lattice
parameters are chosen and if the supercell is
large enough. Moreover, the computational
effort required to obtain the energies of many
con� gurations can be reduced if there is no need
to relax the lattice stresses as well as the forces
on the atoms. For calculations with empirical
interatomic potentials, the initial lattice para-
meters can be obtained from a full lattice energy
minimization using the ‘virtual crystal approx-
imation’, in which the cation sites are treated as
having partial occupancies of the different
disordered cations with their interactions given
by an appropriate average of those of the
disordered cations. The virtual crystal approx-
imation gives a reasonable reproduction of a
disordered crystal (Winkler et al., 1991; Dove
and Redfern 1999; Sainz-Diaz et al., 2001),
unless one is aiming at accurate calculations of
subtle effects such as excess volumes associated
with solid solutions (Bosenick et al., 2001). Such
a scheme is being developed for quantum
mechanical calculations.

FIG. 5. Two different types of sites, linked by
interactions of different types.
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Spreadsheet solution
The general approach lends itself to automation,
and one of us (AB) has developed a spreadsheet
implementation of the method. This is based on
Microsoft Excel, but the principles can be applied
within most other programming environments.
The general procedure, which starts from the
crystal structure and leads to the production of a
� le containing input data for a Monte Carlo
simulation of the ordering processes, is sketched
in Fig. 6.

The starting crystal structure is used to produce
a supercell of appropriate size. Typically it is
useful for the supercell to be of a size such that
there is of the order of a few tens of sites over
which ordering occurs, which we call the X-sites.
Each of the N X-sites is initially occupied by two
different cations, which we label as species A and
B. An appropriate number NA of the X-sites are
selected at random and assigned to be occupied by
species A only, and the remaining NB = N NA

X-sites are assigned to species B. We repeat this
procedure many times to produce a large number
of different random con� gurations. A GULP input
� le is written for each con� guration, with a name
that includes the con� guration number. A script
� le to run all the GULP calculations in sequence
is also written. In our work, the GULP and script
� les are transferred to a unix workstation, and the
script � le is executed in order to run the GULP
energy minimization calculations for each con� g-
uration. This could also be performed on a PC
under the Microsoft Windows operating system.

After all con� gurations have been relaxed with
GULP, the output � les are transferred back into
the spreadsheet environment. The relaxed values
of the energy (together with other information
such as the quality of the energy minimization
constants) are then read back into a spreadsheet.
Only con� gurations that have been successfully
relaxed should be used in the subsequent analysis;
with large con� gurations it is often found that
some con� gurations do not relax without user
intervention.

In parallel with the generation and execution of
the many GULP � les for the different atomic
con� gurations, we have to determine all the
variables that are required for the model
Hamiltonian as outlined earlier in this paper.
This means identifying all the different types of
interactions that may be included within the
Hamiltonian. These generally include: (1) the
number of � rst, second, and more distant A A
neighbours; (2) in the case of differing crystal-
lographic X-sites we have to count the number of
A and B species on each type of X-sites; (3) in
some cases, additional energy-terms, such as
multi-site interactions.

The interactions are usually based on the
distances between the atomic sites of the
average crystal structure. For example, for the
pair interactions, these are automatically ordered
by the distances between sites. However, there are
cases when symmetry (or just bad luck!) allows
two distinct types of interaction to have the same
distance, and so some attention may be needed to

FIG. 6. Flow diagram illustrating the procedure of generating a � le containing input data for a Monte Carlo
simulation, from a crystal structure.
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manually over-ride the automatic ordering of
interactions based on distances and to separate
distinct interactions with the same distance. For
every con� guration, the spreadsheet then counts
the number of interactions. The information about
which site is occupied by which species in each
con� guration is always stored in the spreadsheet.
As a result, if it becomes necessary to extend the
model, it is possible to return to this stage to
determine additional variables from the stored
information. It is also necessary to take account of
the periodic boundary conditions. In some cases it
may be unavoidable to have one atom interacting
with another atom and its image in another unit
cell, which will give a factor of two on the
contribution from the bond energy.

To identify the important interactions and to
determine the values of the J parameters, two
built-in procedures of Excel, the Solver and the
Multilinear Regression, can be used. The latter
gives extensive information about the quality of
the � tted model and the statistical relevance of the
various J values, but is limited in the total number
of adjustable parameters. Correlation between
different J values can be quite high. Some
experimentation in the choice of interactions to
include may be required in order to identify
insigni� cant interactions. The output from the
Multilinear Regression analysis includes a
number of signi� cance parameters, which help
guide this experimentation. High correlations
between parameter values will give rise to large
values of the standard errors on the � tted values of
the exchange parameters. In such a case it will not
be appropriate to merely remove all the correlated
parameters simply because the regression indi-
cates a high standard error. Correlation between
parameter values is not a problem in the way that
it is for some other data-� tting procedures:
provided that a consistent set of interactions is
used in subsequent applications, correlation has
little effect. The only problems come when only a
subset of a set of � tted interactions is used.

In complicated cases, where there are many
exchange interactions, it can be useful to perform
the � tting process in stages. For example, since
the closest neighbours tend to have the strongest
exchange interactions, it may be appropriate to
obtain values for these � rst, and then extend the
� tting procedure to include more distant interac-
tions. To extend the example, if one had a layered
structure, with strong exchange interactions
within a layer but weak exchange interactions
between layers, it may be appropriate to obtain

values of the exchange interactions within the
layers � rst, and then re� ne the model by including
the exchange interactions between layers. If at
any stage it appears that some of the exchange
interactions do not have a numerical signi� cance,
these can be excluded in subsequent � ts, and the
procedures can be repeated until a satisfactory
model has been obtained. On the other hand, it
may turn out that the initial set of exchange
interactions is not complete, and the model will
then need to be extended in a subsequent � t.

At each stage the quality of the � t can be
monitored by plotting the energy of the con� g-
urations calculated from the set of � tted values of
E0, J’s and m’s against the corresponding lattice
energy. We will show examples of these plots in
the case studies given later. For a good � t, the
points will be tightly clustered around the line
passing though the origin with gradient of unity.
The quality of the � t can be assessed using
coef� cients such as R2, de� ned as

R2 1
DE 2

E2 E 2

where E is the energy of a con� guration, DE is the
difference between the model energy and lattice
energy of a con� guration, and the angle brackets
denote averages over all con� gurations. The
numerator gives the variance of the differences
between the � tted energies and lattice energies,
which is normalized by the variance of the spread
of energies of all con� gurations given in the
denominator. Clearly, a value of R2 close to 1
indicates the best � t.

There is one other hazard that the user needs to
be aware of. It is possible for any structure to have
different ordered states with similar energies, and
the � tted model may give a lowest-energy ordered
structure that is not the lowest-energy structure in
the initial lattice energy minimization calcula-
tions. This is possible if there is a large sensitivity
to small changes in the model parameters (as was
found in work on Al/Si ordering in cordierite by
Thayaparam et al., 1996). One solution may be to
include particular types of con� gurations in the
model � tting procedure (with appropriate weight-
ings) that highlight the differences in energy
between different possible ordered structures. The
point is that the model � tting cannot be treated as
completely routine, and checks such as the ability
of the � nal model to give the correct ordered
structure as the lowest-energy structure are
essential.
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The � nal stage is to generate input � les for
subsequent Monte Carlo calculations. The impor-
tant information that needs to be transferred to
these � les is the values of the interaction
parameters and the neighbour lists that de� ne
the interactions. In complex materials, these
neighbour lists can be quite extensive.

For the different tasks summarized above,
several different Excel macros (modules) have
been developed using VISUAL BASIC. These
are available for downloading from the web site
http://www.esc.cam.ac.uk/ossia. A manual for
the use of these modules is also available from
this web site. One note of caution is that the use
of these modules is rarely completely automatic,
and we have found that some small modi� cations
are frequently needed when being used for a new
system in order to take account of special cases
that may arise! The procedures have been
arranged that the output from one can be used
for analysis in a different programming environ-
ment. For example, it may be useful to use a
different � tting program to obtain the values of
the exchange interactions and chemical poten-
tials, particularly since the � tting procedure can
be quite challenging in complex cases. However,
one of the most useful features of the spreadsheet
method is that all the tasks are managed within a
common environment, and the spreadsheet is
able to perform an important data-management
task.

Case of three ordering atoms
When there are three ordering atoms rather than

two, as outline as Case 4 in the previous section,
there will be three times as many exchange
constants to determine as in the case where there
are only two ordering atoms. This may make for a
complicated � tting procedure, particularly if there
are many different types of interaction neighbours
to take into account. We label the three types of
atoms as A, B and C as before. From before, we
require the three exchange interactions

JAA = (EAA + EBC EAB EAC)

JBB = (EBB + EAC EAB EBC)

JCC = (ECC + EAB EAC EBC)

Some help may be gained by performing
analysis with con� gurations containing only two
types of atoms, which can give the two-atom
exchange interactions (now speci� cally labelled
by the superscript denoting the pairs of cations for
clarity):

J(AB) = EAA + EBB 2EAB

J(AC) = EAA + ECC 2EAC

J(BC) = EBB + ECC 2EBC

We noted earlier that it follows from the
constraints linking the numbers of pairs of
atoms that it is not possible to extract separate
values of the bond energies (such as EAA and
EAB). However, the two-atom exchange interac-
tions will provide useful constraints. By forming
appropriate combinations of the two-atom
exchange constants, we have

J(AB) + J(AC) J(BC) =
2EAA + 2EBC 2EAB 2EAC = 2JAA

J(AB) + J(BC) J(AC) =
2EBB + 2EAC 2EAB 2EBC = 2JBB

J(AC) + J(BC) J(AB) =
2ECC + 2EAB 2EAC 2EBC = 2JCC

If an appropriate set of two-atom con� gurations
is combined with the set of three-atom con� gura-
tions, the database of con� guration energies may
be suf� ciently constrained to enable the � tting
procedure to be stable even with many different
types of interaction. Of course, this relies on there
being no non- analytic dependence of the
exchange interactions on chemical composition.

Case studies

Al/Si ordering energies in framework aluminosilicates
From a number of studies, we now have a large
database of values for the � rst and distant
neighbour Al/Si tetrahedral exchange interactions
of a wide range of aluminosilicates (Bertram et
al., 1990; Dove et al., 1993; Thayaparam et al.,
1994, 1996; Myers 1999; Palin et al., 2001). The
nearest-neighbour values are shown graphically in
Fig. 7. The range of examples includes cases
where the nearest-neighbour interactions lie
within chains, sheets or within a three-dimen-
sional framework.

The important point that emerges from Fig. 7 is
that the range of values of the nearest-neighbour
exchange interactions is quite large. If the main
component of the interaction was purely electro-
static in origin due to the charge difference
between Al3+ and Si4+ cations, such a range may
not have been expected. However, the range of
values points to the importance of the effects of
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local stress � elds arising from the mismatch in size
between the Al3+ and Si4+ cations. For � rst-
neighbour interactions, these effects are reduced
if the arrangement maximizes the number of
neighbours being cations of different size. The
relative sizes of the effects of the localized stress
� elds and the electrostatic contributions have been
identi� ed by McConnell et al. (1997) using Al/Si
ordering in kalsilite as a speci� c test case. Different
structures have different abilities to accommodate
local stress � elds, with different ways of forming
localized strain distortions. This accounts for the
range of values of the exchange interactions.

The same discussion is also relevant for second
and more distant neighbour exchange interactions.
We compare the exchange interactions for six-
membered rings of tetrahedra in the framework
structure cordierite, Mg2Al4Si5O18 (Thayaparam
et al., 1996), in the sheet silicate muscovite,

K2Al4(Si6Al2O20)(OH)2 (Palin et al., 2001), and
i n t h e a m p h i b o l e t s c h e r m a k i t e ,
Ca2(Mg3Al2)(Si6Al2)O22(OH)2, which contains
ribbons of six-membered rings of tetrahedra (our
own unpublished data). In Fig. 8, we show the
de� nitions of the three exchange interactions, and
chart the values for the different examples.
Clearly there is a signi� cant variation between
the different structures.

Recent work on Al/Si ordering in muscovite
(Palin et al., 2001) illustrates many aspects of the
approach to modelling Al/Si ordering. Muscovite
is a layer silicate. The structure has sandwiches of
two layers of tetrahedral sites of composition
AlSi3, separated by a layer of octahedral sites
containing Al cations. Two sandwiches are
separated by a layer of K cations, which gives
charge balance. The structure is shown in Fig. 9.
Fifty con� gurations were used to calculate the
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Sillimanite (c)

Sillimanite (ab)

Gehlenite (T1–T2)

Gehlenite (T2–T2)

Leucite

Cordierite (T2–T2)

Cordierite (T1–T2)

Anorthite

Intermediate feldspar

Albite

Muscovite

Tschermakite

Ca-Tschermak

Exchange energy (eV)

FIG. 7. Graphical representation of the nearest-neighbour Al/Si exchange interactions for a range of aluminosilicate
crystals, calculated using empirical model interatomic interactions. In some cases there are two distinct nearest-
neighbour interactions, either because there are two distinct tetrahedral sites or simply because of the structure
topology these are discussed in the corresponding references. References for the data are, sillimanite, Al2SiO5:
Bertram et al. (1990); leucite, KAlSi2O6: Dove et al. (1993); gehlenite, Ca2Al2SiO7: Thayaparam et al. (1994);
cordierite, Mg2Al4Si5O18: Thayaparam et al. (1996); the feldspars anorthite, CaAl2Si2O8, albite, NaAlSi3O8, and one
of intermediate composition Ca0.5Na0.5Al1.5Si2.5O8: Myers (1999); muscovite, K2Al4(Si6Al2O20)(OH)2: Palin et al.
(2001); Ca-Tschermak pyroxene, CaAl2SiO6 and tschermakite amphibole, Ca2(Mg3Al2)(Si6Al2)O22(OH)2: our

unpublished data.
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ordering energies. The � rst stage was to determine
the exchange interactions within a single layer of
tetrahedral sites. It was necessary to de� ne
exchange interactions to the fourth neighbour in
any layer in order to be able to uniquely de� ne an
ordered Al/Si arrangement within a layer. The
layer interactions are shown in Fig. 9. The � tting
procedure gave positive values for J1, J2 and J4,
and a near-zero value for J3 (the values for J1 J3

are given in Fig. 8, and for comparison the value
of J4 was 0.13 eV). The values of the exchange
interactions led to the proposal for the ordered

structure shown in Fig. 9. In fact without the
inclusion of J4 there are several possible ordered
structures, and the sign and value of J4 is crucial
for differentiating between them. Exchange
interactions were also de� ned between tetrahedral
sites in different layers to give the full three-
dimensional nature of ordering processes. Most of
these were quite weak, with values below that of
J1 (1.0 eV) and J2 (0.23 eV), although one
interlayer exchange interaction had a value
higher than that of J2 (0.38 eV). The quality of
the � t is shown graphically in Fig. 10.

FIG. 8. (Left) The de� nition of the � rst-, second- and third-neighbour interactions, J1, J2 and J3, within a 6-membered
ring of tetrahedra. (Right) Graphical representation of the values of J1, J2 and J3 within 6-membered rings of
tetrahedra for a number of different aluminosilicate crystals, calculated using empirical model interatomic
interactions. References for the data are, cordierite, Mg2Al4Si5O18: Thayaparam et al. (1996); muscovite,
K2Al4(Si6Al2O20)(OH)2: Palin et al. (2001); tschermakite, Ca2(Mg3Al2)(Si6Al2)O22(OH)2: our unpublished data.

FIG. 9. (Left) Crystal structure of muscovite, K2Al4(Si6Al2O20)(OH)2, showing the layers of tetrahedral sites either
side of a layer of octahedral sites, and K cations in the interlayer space. (Centre) A single layer of tetrahedral sites in
muscovite showing the J4 exchange interactions (the exchange interactions J1, J2 and J3 are de� ned in Fig. 8).
(Right) The proposed Al/Si ordering on the tetrahedral sites based on the values of the exchange interactions, where
the Al cations are shown as the larger spheres and Si as the smaller spheres (after Palin et al., 2001). The Al cations

are in a hexagonal arrangement that has Al cations with J3 interactions but avoiding J1, J2 and J4 interactions.
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Pyrope grossular solid solution
One of the most important mineralogical solid
solutions is that between the garnets pyrope,
Mg3Al2Si3O12, and grossular, Ca3Al2Si3O12. A
number of interactions involving the exchange of
the Mg2+ and Ca2+ cations between dodecahedral
sites can be identi� ed, and are shown in Fig. 11.
The exchange interactions are labelled according
to the intersite distance. The purpose in
determining the exchange interactions was to be
able to study the thermodynamic properties and
short-range structure of the solid solution. The
calculation of the exchange interactions was
carried out for several compositions, including
the dilute limits where in a supercell containing N
Mg/Ca cations there were only two cations of one
species and N 2 cations of the other species
(Bosenick et al., 2000). The results showed that
the exchange interactions did not vary signi� -
cantly with composition, and there was no
obvious asymmetry between the Mg-rich and
Ca-rich ends of the solid solution. The � tted
exchange energies for different compositions, and

the quality of � t for the 50:50 mixture, are plotted
in Fig. 12.

The interesting point that emerged from the
calculations is that the strongest interaction was,
in fact, the third-neighbour interaction, with only
the fourth- and � fth-neighbour interactions having
appreciable exchange energies. The � rst- and
second-neighbour interactions were close to zero.
At � rst sight, this is surprising, since we are used
to thinking that nearest-neighbour interactions are
always the strongest. However, in the case of the
garnet structure the third-neighbour interaction
involves directly applying a force to an SiO4

tetrahedron that lies exactly between two third-
neighbour sites; this is indicated in Fig. 11. This
force acts to distort the tetrahedron rather than to
simply cause it to rotate, and therefore it
corresponds to the large exchange energy. The
third-neighbour linkages lie in one-dimensional
chains rather than having a three-dimensional
connectivity, and for this reason there is no
Mg/Ca site-ordering phase transition in the solid
solution, at least not at suf� ciently high
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FIG. 10. Graphical representation of the quality of the � tted exchange interactions in the model for muscovite, shown
as a plot of lattice energy calculated using GULP vs. energy of parameterized model. The points represent each of
the con� gurations used in the analysis. The straight line has unit gradient and passes through the origin, and ideally

the points should be closely scattered about this line (Palin et al., 2001).
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temperatures to allow the thermodynamic driving
force to overcome the kinetic barriers. The basic
result obtained using the empirical interatomic
potentials was con� rmed using a set of selected
quantum mechanical calculations performed
using the SIESTA code (as described in
Bosenick et al., 2001).

Pyroxene solid solutions

The diopside Ca-Tschermak solid solution,
Ca[MgxAl1 x]

VI[Si1+xAl1 x]
IVO6 is a good chal-

lenge for the approach we have developed in this
paper. In the Ca-Tschermak end-member, x = 0,
there is Si/Al ordering on the tetrahedral sites
(labelled with the superscript IV in the chemical
formula) with equal numbers of the two types of
cations. For other members of the solid solution
(x < 1), there is also Mg/Al ordering on the
octahedral (VI) sites in addition to the Si/Al
ordering on the tetrahedral sites. We therefore need

to determine exchange interactions for the ordering
on the tetrahedral and octahedral sites, and for
interactions between these types of sites. The
crystal structure is shown in Fig. 13, which also
shows the exchange interactions used in this work,

The development of the model followed the
following stages. First, the exchange interactions
involving the tetrahedral ordering in the pure
Ca-Tschermak end-member were constructed.
The dominant interaction found is the Al Al
repulsion between corner sharing (Al,Si)O4

tetrahedra in the tetrahedral chains. In addition,
weaker exchange interactions exist between
neighbouring tetrahedral chains. These are
responsible for the ordering between neigh-
bouring chains and hence for the long-range
ordering behaviour of Ca-Tschermak. In the case
of complete Al-avoidance, there are four possible
different fully ordered Ca-Tschermak structures
with space group C2, C1̄, P2/n and P21/n
(Okumara et al., 1974). To date, none has been

X4

X1 X2

X7X6

X3

X5

X4´

{100}

{110}

FIG. 11. Crystal structure of garnet, showing the dodecahedral framework and its linkage to the SiO4 tetrahedra. The
AlO6 octahedra are not shown for clarity. The exchange interactions between the dodecahedral sites (marked as X1
to X7) correspond to the following different distances (which are de� ned for use in Fig. 12): d1 between X1 X2; d2

between X2 X4; d3 between X3 X4; d4 between X1 X5; d5 between X2 X5; d6 between X3 X6; d7

between X3 X7 (after Bosenick et al., 2000).
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FIG. 12. (Left) Graphical comparison of the quality of the � tted model interactions for Mg/Ca site exchange in the
50:50 pyrope–grossular solid solution. (Right) Graphical representation of the values of the exchange interactions for
supercells containing different numbers of Ca cations in a supercell of 24 dodecahedral sites (the numbers in the
legend give the number of Ca cations). The number n of the exchange interactions is given with each group of points

(after Bosenick et al., 2000).
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FIG. 13. Crystal structure of pyroxene, showing the important exchange interactions within the diopside–Ca-
Tschermak solid solution, Ca[MgxAl1 x]

VI[Si1+xAl1 x]
IVO6. The exchange interactions labelled T1 to T11 represent

interactions between tetrahedral sites, O1 represents the interaction between nearest-neighbour octahedral sites, and
Z1 to Z3 represent interactions between a tetrahedal and an octahedral site.
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observed experimentally but according to our
simulations, the energetically most favourable
structure is that of symmetry P21/n. Monte Carlo
simulations (Bosenick et al., 1999; Warren et al.,
2001) suggest that the phase transition is expected
at around 1000 K. However, at these low
temperatures Ca-Tschermak is thermodynami-
cally unstable with respect to transformation to
grossular and Al2O3 (Gasparik, 1984).

In a second step, the exchange interactions
between the octahedral sites were identi� ed.
Simulations were run on diopside-rich solid-
solutions in which the Si/Al distribution on the
tetrahedral sites was modelled as an average site
distribution using the virtual crystal approxima-
tion (discussed above), while the Mg/Al cations
distributed on the octahedral sites were treated as
discrete cations. This trick allowed a separation
and hence an identi� cation of octahedral
exchange interactions without any coupling to
tetrahedral–tetrahedral and tetrahedral–octahedral
interactions. The main exchange interaction is
again a repulsion between neighbouring sites,
albeit a factor of 2 3 times smaller than in the
case of the tetrahedral interactions. Additional
interactions between neighbouring octahedral
chains were found to be very weak and were
therefore neglected.

The last set of simulations were performed on
diopside–Ca-Tschermak solid solutions of
different compositions. Here, all cations, i.e. Al
and Si on tetrahedral sites and Mg and Al on
octahedral sites, were treated as discrete cations.
Since the tetrahedral and octahedral interactions
had been determined in the � rst two steps, the
third step allowed the determination of the
tetrahedral–octahedral exchange interactions. In
contrast to the interactions amongst the tetra-
hedral sites and octahedral sites themselves,
which were positive and hence of repulsive
nature, the interaction between tetrahedra and
octahedra is negative and hence of attractive
nature. This means that it favours Al in both of the
neighbouring tetrahedral and octahedral sites.

In the beginning, a separate analysis of each
dataset for the different compositions enabled the
identi� cation of the dominant exchange interac-
tions plus the determination of their approximate
values. In the � nal stage all data of all
compositions were collected and a consistent set
of interaction exchange parameters was deter-
mined. The � nal plot of the � tted energies is
shown in Fig. 14, where we also give the energies
of the different exchange interactions. The plot

shows that the � tting of the exchange energies
over a range of compositions has produced a
consistent set of exchange interactions, and we
have no clear dependence of the interactions on
the composition variable. These have been used in
Monte Carlo simulations to determine the
resultant ordered structures and to interpret
NMR data, as described in the following paper
(Warren et al., 2001).

Micas and other 2:1layer silicates

The simulations of layer silicates follow the same
challenges as in pyroxene. Here we consider the
general case represented by the formula
Mx+y(Al4 xMgx)(Si8 yAly)(OH)4O20, M = Na,K.
The case x = 0, y = 2 is that of muscovite, for
which the work on Al/Si ordering was discussed
earlier (Palin et al., 2001). The challenge is to
determine the exchange interactions associated
with Al/Mg ordering within the octahedral layers,
and the coupling interactions between the
octahedral and tetrahedral layers.

The approach taken was to build upon the work
on Al/Si ordering in muscovite. In a separate task
we computed Mg/Al cation exchange interactions
within the octahedral layers of smectite/illite. We
used a system with x = 1 in the chemical formula
given above, to give the composition MgAl3 in
the octahedral layer. We set y = 0.28 and y = 0.8
in separate simulations, and used Na as the
interlayer M cation in both cases, and also K for
the y = 0.8 simulation. The arrangement of
octahedral sites is exactly the same as the
arrangement of tetrahedral sites shown in Fig. 9.
The same four exchange interactions shown in
Figs 8 and 9, but now for Al/Mg ordering, were
considered. The Al/Si cation arrangements in the
tetrahedral sheets were assumed to be random and
approximated by the virtual crystal method, as
was done in the intermediate stage of developing
models for the pyroxenes (discussed above). For
each composition, nearby 90 con� gurations with
different ordering level of the octahedral cations
were calculated using a 26261 supercell. The
results for J1 to J3 are given in Fig. 8; for
comparison, the value of J4 was 0.13 eV, similar
in size to the other exchange interactions.

The � tted values of the exchange interactions for
Na1.28(Al3Mg1)(Si7.72Al0.28)(OH)4O20 were
0.65(1), 0.16(1), 0.09(1), 0.015(9) eV for J1, J2,
J3, and J4 respectively (errors associated with
parameter correlation given in brackets), which are
only slightly lower overall than the corresponding
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values for Al/Si ordering in the tetrahedral layer.
Replacing Na by K as the interlayer cation, and
increasing the tetrahedral charge, did not produce
signi� cant changes in the exchange interaction
values: the values of the four exchange interactions
averaged over all three simulations are 0.64(2),
0.16(1), 0.08(1) and 0.023(8) eV respectively, with
standard deviations from the average given in
brackets. The variations of the � tted values of the
exchange constants between samples are of the
same order as the correlation errors on the
individual parameter values. Note that the
exchange interactions follow the same pattern as
in the tetrahedral layers, and will predict the same
ordering as in the tetrahedral layers. As an aside,
the procedure was repeated for a composition
Al3Fe3+ in the octahedral layer, giving exchange
interactions that are an order of magnitude lower
(values 0. 025(1), 0. 007(1), 0. 003(1) and
0.0025(11) eV respectively).

Finally, using the � tted values of the Al/SiIV

and Mg/AlVI exchange interactions, we also
determined values of the interactions between
the tetrahedral and octahedral layers appropriate
for the study of coupled ordering processes in
phengite, K2(Al3Mg)(Si7Al)O22(OH)4 (x = 1, y =
1 in the general formula given above). This is now
a case of having three ordering cations, but with
the restriction that there are two types of cation in
one network (tetrahedral sites) and two types in
the second network (octahedral sites). This
corresponds to Case 3 in the section ‘Basic
Theory’. We de� ned four tetrahedral–octahedral
interactions based on distance, and computed the
exchange interaction based on the number of
Al Al pairs on any two sites. The exchange
interactions are de� ned in Fig. 15. It was found
that the interaction labelled Jc was weak (value
0.03 eV), whereas the values of the other
exchange interactions were strong and negative
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(of order 1 eV). This implies that the interac-
tions between tetrahedral and octahedral sites
favours having Al neighbours. The importance of
this will be shown in the Monte Carlo simulations
in the following paper (Warren et al., 2001),
where it was found that these coupled interactions
overcome the natural ordering process in the
octahedral layer to produce a more complex
ordered structure.

Mg/Al ordering (octahedral) and Al/Si ordering
(tetrahedral) in amphiboles

An ongoing project on cation ordering in
amphiboles highlights a number of the points
made earlier in this paper. In amphiboles there is
both Al/Si ordering in chains of tetrahedral sites,
and Mg/Al ordering in chains on octahedral sites.
In this regard the situation is similar to the
coupled ordering in the micas and pyroxenes
discussed above, although the two points that we
illustrated are not with regard to the coupled
processes.

The exchange interactions were obtained for
Mg/Al ordering in the octahedral sites in
glaucophane, Na2(Mg3Al2)Si8O22(OH)2. There

are three distinct octahedral sites, as shown in
Fig. 16. This is an example of the need for the
inclusion of chemical potential terms, as outlined
in Case 2 in the ‘Basic Theory’ section. The � t of
the model Hamiltonian was quite reasonable. One
result was that the energy of placing an Al cation
on the M1 site was the same as that for the M3
site, so a single chemical potential associated with
an Al cation moving onto an M2 site was used in
the � nal model. A positive value (0.36+0.08 eV

the error represents correlations with the values
of other parameters in the model) was obtained,
which by itself makes it unfavourable for Al
cations to be on the M2 sites. This is contrary to
experimental data (Hawthorne, 1997), which
suggest that the M2 site is in fact the site preferred
by the Al cations. Of course, the chemical potential
term is not the only term. The relevant exchange
interactions are de� ned in Fig. 16, and by
themselves these exchange interactions would
prefer to have the Al cations on the M2 sites.
The point is illustrated in Fig. 17, where we
compare the energies of four con� gurations
graphically. Two of these are ordered structures
with all the Al cations on the M1 sites and all the
Al cations on the M2 sites. The other two

FIG. 15. Representation of a pair of neighbouring tetrahedral (upper layer, yellow and blue spheres) and octahedral
layers (lower layer, red and green spheres) of cation sites in phengite, K2(Al3Mg)(Si7Al)O22(OH)4, showing the four
different exchange interactions computed in the analysis described in the text. In the tetrahedal layer, the yellow
spheres represent Si cations and the blue spheres represent Al cations. In the octahedral layer, the green spheres
represent Al cations and the red spheres represent Mg cations. The arrangement of cations in the two layers is the

ordered structure obtained using Monte Carlo simulations (Warren et al., 2001).
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FIG. 16. Ribbons of octahedral sites in glaucophane, Na2(Mg3Al2)Si8O22(OH)2, labelled M1, M2 and M3. The
yellow and blue octahedra represent sites occupied by Mg and Al cations respectively in the ordered structure. The
� gure shows some of the signi� cant � tted values of the exchange interactions for Mg/Al ordering, with errors in

brackets.
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FIG. 17. Comparison of energies of four con� gurations of Mg and Al cations in glaucophane, Na2(Mg3Al2)-
Si8O22(OH)2. Con� gurations #1 and #2 have Al cations in only M2 and M1 sites respectively, whereas
con� gurations #3 and #4 both have half of the Al cations in M1 and M2 sites. The lowest bar for each con� guration
represents the lattice energy calculated using the GULP code, with the constant E0 obtained in the � tted model
subtracted. The middle bar represents the energy of the � tted model (minus E0), which is divided into contributions
from the chemical potential and the exchange interactions (note that there is no contribution from the chemical
potential in con� guration #2). The top bar represents the energy calculated by quantum mechanics methods using the
SIESTA code (with a constant value subtracted). The blue vertical line indicates the lowest energy of all four
con� gurations from the GULP calculations (con� guration #3), and the maroon vertical line indicates the lowest
energy from the SIESTA calculations (con� guration #1). The point of the comparison is that the SIESTA calculation
gives the experimental ordered structure as the lowest-energy structure, whereas the GULP calculation � nds another
con� guration with lower energy. On the other hand, the exchange interactions alone give the experimental ordered
structure as the lowest-energy structure, and the value of the SIESTA calculations is that they can give corrections to

the value of the chemical potential.
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con� gurations have half the Al cations on M1 sites
and half on the M2 sites. In Fig. 17 we show the
raw lattice energies, the model energies, the
chemical potential energies, and the sums of the
exchange energies. It is clear that the exchange
interactions are suf� ciently strong to overcome the
chemical potential energies and favour M2
ordering of the Al cations over M1 ordering.
However, one of the con� gurations with Al cations
distributed across both the M1 and M2 sites has a
lower overall energy that the con� guration with
pure M2 ordering, both in the raw lattice energy
and the model Hamiltonian. This is possible
because there is a � ne balance between the
energies of the chemical potential and exchange
interactions.

The problem with the disagreement between
the predicted ordering pattern (Al in both M1 and
M2 sites) and the observed ordering pattern (Al
only in M2 sites, Hawthorne, 1997) is likely to
arise because of problems with the empirical
interactions. These are likely to give reasonable
values for the exchange interactions if these are
determined by strain effects associated with size
mismatch, but, as we have already mentioned, it is
possible for the empirical models to give
inaccurate relative energies of cations in different
sites when these differences are small. The
solution was to use quantum mechanical calcula-
tions. However, with 328 atoms in the unit cell of
the samples being studied, such calculations are
on a scale that is far beyond the scope of routine
calculations. The SIESTA code was used to
calculate the energies of the four con� gurations,
using minimal basis sets (more sophisticated basis
sets would be too demanding). The energies given
by these calculations are shown in Fig. 17. It can
be seen that the calculations now give the
structure with the Al cations ordered on the M2
sites only as the lowest energy structure, in
agreement with experiment (reference). Assuming
that the values of the exchange interactions
obtained from the empirical potentials are
satisfactory, it is possible to subtract the exchange
energies from the SIESTA results in order to
obtain estimates for the chemical potential
associated with the M2 site. From the four
con� gurat ions we est imate a value of

0.20+0.13 eV; in this case the error arises
from the fact that there is not complete
consistency between the quantum mechanical
and empirical calculations. However, all con� g-
urations give a negative value of the chemical
potential for the Al cations on the M2 sites, in

contrast to the positive value given by the
empirical models. SIESTA calculations with
more con� gurations, or attempts to use more
accurate basis sets, would tie down the value of
the chemical potential more accurately. This
example shows how it may be possible to
combine calculations of exchange interactions
from empirical model potentials with chemical
potentials obtained from quantum mechanical
calculations.

To obtain the interactions for the coupled
system, the interactions for the tetrahedral
network were obtained as a separate operation.
Calculations were performed on tschermakite,
Ca2(Mg3Al2)(Si6Al2)O22(OH)2. The disorder in
the octahedral sites was represented using the
virtual crystal approximation. The chains of
tetrahedral sites are shown in Fig. 18, together
with the de� nitions (and � tted values) of some of
the exchange interactions. There are two tetra-
hedral sites, and this necessitated the use of a
chemical potential. In fact, the � tted value of the
chemical potential ( 0.56 eV) was large enough
to favour the location of the Al cations on the T1
sites, in accord with experiment (Oberti et al.,
1995). In this case the empirical models have
obtained the correct sign for the chemical
potential! The values of the exchange interactions
shown in Fig. 16 are positive (numerical values
given in Fig. 8), which suggests that the lowest-
energy ordered structure has alternate Al cations
in the T1 sites on opposite sides of the ribbons of
tetrahedral sites, as shown in Fig. 18. The
exchange interactions in the a direction are all
positive, and of similar size, which means that
there is only a weak residual ordering interaction
between ribbons in this direction. Moreover, the
exchange interactions between ribbons in the third
direction (b) are also weak. Overall, it appears
unlikely that complete three-dimensional ordering
in natural samples, beyond a preference of the Al
cations for the T1 sites, is unlikely. This example
has highlighted the possibility to obtain simple
insights from the values of the parameters in the
model energy function directly before the need to
resort to more detailed Monte Carlo calculations.

Spinel

Our � nal example is that of Mg/Al ordering
across both the octahedral and tetrahedral sites in
spinel, MgAl2O4. In this case, the disordering
process does not involve a change in crystal
symmetry, but involves a change in the
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partitioning of the cations between the tetrahedral
and octahedral sites. This is an example of a non-
convergent ordering process (Carpenter et al.,
1994; Carpenter and Salje, 1994), and although it
has many features of a phase transition, there is no
speci� c ordering temperature. Because the main
ordering process involves atoms changing their
coordination, it is highly unlikely that empirical
interatomic potential models could realistically
describe the changes in energy associated with
such a change. Therefore, the model for the
ordering process in spinel required the use of ab
initio quantum mechanics models. We used the
CASTEP/CETEP codes (Payne et al., 1992;
Clarke et al., 1992) to calculate the energies of
a relatively small number of con� gurations of
atoms.

Because of the small number of con� gurations,
the number of parameters in the model
Hamiltonian would necessarily be limited, and
some experimentation was required to � nd the

minimal set that would reproduce the calculated
energies to a reasonable level. A good model was
obtained by incorporating the exchange energy
associated with cations moving between tetra-
hedral and octahedral sites and a single exchange
interaction between nearest-neighbour tetrahedral
and octahedral sites, and a three-site term. We
identi� ed two likely three-site terms, based on the
three polyhedra (tetrahedra T, or octahedra O)
linked at a common oxygen atom (Fig. 19).

Only the T O O term was found to be
signi� cant. The � nal model had only three
adjustable parameters (plus a zero-energy term),
but was capable of representing the quantum
mechanical energies with reasonable accuracy, as
seen in Fig. 20. Further details of the develop-
ment of the model are given by Warren et al.
(2000a,b).

The model Hamiltonian was used for Monte
Carlo simulations (Warren et al., 2000a,b, 2001).
The results for the order parameter are shown in

FIG. 18. The ribbons of tetrahedral sites in tschermakite, Ca2(Mg3Al2)(Si6Al2)O22(OH)2. The pink sites represent the
sites occupied by the Al cations in the ordered ribbons according to the � tted model, and the blue sites represent

those occupied by the Si cations.

T–O–O O–O–O

FIG. 19. Model of Mg/Al ordering across both the octahedral and tetrahedral sites in spinel.
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Fig. 21, where they are compared with data
obtained by neutron diffraction (Redfern et al.,
1999). The important point from the comparison
is that the calculated temperature-dependence of
the order parameter is in close agreement with the
experimental data. The agreement is not perfect,
but since the model calculations were developed
without any account being taken of experimental
data, the close agreement is a remarkable
validation of the whole procedure.

Conclusions

In this paper, we have outlined an approach to
determining the interactions involved in the
exchange in the site positions of different types
of cations in crystal structures. We have shown
for several different types of systems how the
energies can be expressed in terms of a few
parameters within a model Hamiltonian. The
results of the � tting of these parameters to large
databases of energies of con� gurations have
shown that the approach gives a reasonable
representation of the ordering energies. We have
also outlined issues associated with the use of
empirical or quantum mechanical methods to
describe the interactions between cations.

A number of important physical principles have
emerged from this study. One is that it is not

possible to transfer exchange interactions between
different crystal structures. The main example
highlighted in this paper is that the energies
associated with Al/Si ordering are very different
for different crystal structures. This indicates that
the energies are determined by the particular
ability of the crystal structure to distort to
accommodate the local strains associated with
the mismatch in size between the Al and Si
cations, and are not as general one might have
imagined. A second important principle is that the
exchange energies can be relatively constant
across a solid solution, although this may not
always be the case. We have found that the cation
ordering interactions in the pyrope–grossular,
diopside–Ca-Tschermak, and mica series are
independent of composition, but that there are
systematic variations in the interactions for Al/Si
ordering in the albite–anorthite series.
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